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A method for the treatment of long-dimensional chemical data arrays is presented in
this work with the aim of maximising classification models. The method is based on the
construction of fingerprints and the subsequent generation of a similarity matrix. The
similarity calculation has been modified through a scaling process to take into account
different significance shown by the variables. The method was applied to spectral mea-
surements of wines and several aspects were studied, namely: threshold considered in
the construction of fingerprints and patterns, weighting factor used for scaling, normal-
isation method, etc. The application of both Principal Components Analysis and Soft-
Independent Modelling of Class Analogies to the similarity matrices gave better classi-
fications of the information than those obtained using original data.
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1. Introduction

Data employed for modelling of natural or artificial processes can be
obtained from scientific and engineering experiments. Modern instrumental tech-
niques provide scientists with Long-Dimensional Data Arrays (LDDA) in short
intervals of time. The information able of extracting from these LDDAs depends
considerably on the applicability of mathematical and statistical methods to
these data sets. Multivariate analysis is the statistical discipline that encompasses
methods dealing with the study of phenomena or objects characterised by n
observations or properties, respectively [1,2].

Supervised Pattern Recognition Techniques (SPRT). The assignment of an
object Oi into a given class C j can be expressed as a function of a set of
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variables V = {v1, v2, . . . , vm}. If the measurement of V is not easy (expensive,
time-consuming, etc.), a set of predictor variables P = {p1, p2, . . . , p j } with
higher availability than V can be used to predict when an object belongs to a
given class. This is considered as a qualitative regression process consisting of
two steps, namely: the training and testing stages. This classification process is
indirect, and so, SPRTs [3,4] must be used in order to build the classification
model.

There are two sorts of SPRTs summarised in literature, namely: parametric
and non-parametric approaches. The formers are based on the calculation of dis-
tances between the different objects. Mahalanobis and Euclidean distances [5,6]
are the two main parameters employed for classification. In chemistry, the major-
ity of parametric classification methods are based on Soft-Independent Modelling
of Class Analogies (SIMCA) and Linear Discriminant Analysis (LDA) techniques.
A reduction of the original data space into a latent space is carried out in both
above commented techniques.

Regarding non-parametric approaches, the use of Artificial Neural Net-
works (ANN) and Genetic Algorithms (GA) with the aim of classifying objects
has been extensively used in science. Here, the assignment of a given object to a
specific class is based on concepts related to the functioning of the human brain
and the evolution theory [7].

The testing step consists of the evaluation of the prediction capability of
the developed classification rules. The classification error (considered as the sum
of false positives and false negatives obtained for the test set) is the parameter
employed for the characterisation of the models’ efficiency [8]. This can be nega-
tively affected by two main reasons, namely: low signal/noise ratios owing to the
high-random error involved in some types of measurement and LDDAs showing
a high degree of similarity between them [9,10].

In this work, a new method for transforming LDDAs into fingerprints
and the subsequent construction of a similarity matrix is presented with the
aim of overcoming the upon above-commented disadvantages. After describing
the method, its efficiency as data treatment in the development of classification
rules was tested. With this purpose, SIMCA models were built using similarity
matrixes as inputs of SIMCA processes.

2. Translating data to fingerprints

2.1. Outliers detection and deletion

Detection of LDDAs that behave as outliers is carried out to detect anom-
alies. Objects are projected in the space built after realising a PCA, and then,
leverage value (a measure of how far an object is compared to the majority) and
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residual variance are computed. The outliers must be examined in order to know
if either they provide any useful information or they have to be removed.

2.2. Data normalisation

A LDDA is considered as a variable array a composed by n elements
a(i) that represent the measurements at different conditions i . A matrix A with
dimensions n × a is defined for the sample set, where n is the number of sam-
ples and a is the number of variables. The element A(i, j) represents the mea-
surement value for the sample i at the condition j . The matrix A is transformed
into a normalised matrix Ā.

In this paper, the standard normalisation has been used, expressed as
follows:

Standard : ∀n, A(i, j) = A(i, j) − min(A(n, j))

max(A(n, j)) − min(A(n, j))
. (1)

Other types of normalisation were tested. The types depending on data
distribution (as the standard normalisation), i.e. logarithmic normalisation,
yielded similar results. On the other hand, normalisation methods independent
of data distribution, i.e. tangential normalisation, were not appropriate.

2.3. Construction of the fingerprints

After normalising data, the matrix A has been transformed into a new
matrix Ā consisting of values within the range [0,1]. The latter is used for build-
ing a new matrix F , the fingerprint matrix, as follows:

• A threshold value t within the range [0,1] is selected for the construction
of fingerprints.

• An element F(i, j) = 1, if and only if A(i, j) � t , and F(i, j) = 0 other-
wise.

Thus, the threshold value t determines the significance of the measurement
at every condition. As an extreme case, the matrix F is equal to the unity matrix
when t = 0 and, on the other hand, most of elements F(i, j) are equal to zero
when t = 1.

3. Obtaining similarity matrices

Once fingerprints have been generated, a symmetrical matrix of similarity
is built with a low computational cost. The transformation of the LDAs into
fingerprints allows using any of the similarity indexes proposed in the literature
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[11,12]. In this paper, the Tanimoto index has been used, which is described as
follows:

TA,B = c

a + b − c
, (2)

where c represents the number of bits set to 1 common in the fingerprints A and
B; a represents the number of bits set to 1 in the fingerprint A; and b represents
the number of bits set to 1 in the fingerprint B.

A new way of similarity calculation based on the Tanimoto index is pro-
posed aimed at increasing the robustness of the methods regarding internal var-
iability of the samples. Thus, the averaged Tanimoto index takes into account
the correspondence of the bits equal to 1 (T 1

A,B) and the bits equal to 0 (T 0
A,B)

between two fingerprints. The averaged index is calculated as follows:

TA,B = T 1
A,B + T 0

A,B

2
. (3)

The calculation of similarity measurements using the Tanimoto index is
applied to the matrix F , thus building the similarity matrix S. This matrix is
symmetrical and its dimension is n × n, where n is the number of samples
(objects). The elements S(i, i) are equal to 1 and each element S(i, j) represents
the similarity value between the sample i and the sample j obtained from the
application of equations (2) or (3) to the fingerprint matrix F .

4. Refining the similarity matrix calculation

As can be seen in equations (2) and (3), the following points have been con-
sidered in the construction of similarity matrices:

1. All the bits of the fingerprints, and in turn, all the condition measure-
ments, contribute to the calculation with a constant level of significance.
Thus, all the bits influence the characterisation and behaviour of the
samples in the same way. This influence or loading is equal to 1/n, where
n is the total number of variables.

2. Therefore, all the samples belong to a set with similar characteristics.
This set is used for comparison by means of a similarity calculation.

Since the target objective is the development of methods for classification
of objects, the calculation of the similarity matrix S can be enhanced. The pro-
cedure proposed is as follows.

4.1. Construction of pattern fingerprint

The number and position of the bits set to 1 (or 0) in the pattern fingerprint
are the keys for the application of equations (2) or (3), and they clearly depend
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on the problem under study. For that, this dependence makes necessary that the
proposed model is open regarding any problem, any number of variables, char-
acteristics of the objects, etc.

The existence of a set of pattern objects with properties very well-known
possibilities the construction of a F P matrix composed by p rows (number of
pattern objects) and a columns or variables (equal to the F matrix).

The frequency of 1s is analysed for each column a of the F P matrix in
order to generate an array of frequencies f in the following way:

f (a) =
∑i=z

i=1 F P(i, a)

p
, (4)

where the values i determine the samples to be considered for construction of the
pattern, z is the number of bits set to 1 and p is the number of pattern samples.

Now, a pattern fingerprint P1 is built from the frequency array f by the
consideration of a threshold frequency value t ′. Thus, a pattern fingerprint P1

is generated with elements P1(i) = 1 if the corresponding element of the fre-
quency array f (i) has a value equal to or higher than the threshold value t ′. As
an extreme case, all the bits of the pattern fingerprint P1 are set to 1 when the
threshold value is t ′ = 0. Thus, the higher the values for t ′, the lower the number
of bits set to 1 in the pattern fingerprint.

4.2. Scaling the similarity matrices

As can be seen in equations (2) and (3), all the fingerprint bits have the
same influence on the similarity calculation. This assertion is correct in applica-
tions as structural similarity calculation [13]; nevertheless, considering a constant
value for the influence of the bits is incorrect in other many problems [14, 15].
Thus, cases like data acquired at very different conditions, objects with different
characteristics, etc., make necessary to consider different loadings for the finger-
print bits. Also, obtaining clusters is very difficult when the objects are very sim-
ilar owing to the few differences between the fingerprints.

Therefore, the similarity calculation can be modified in order to take into
account different loadings for the bits. This modification is carried out through
a scaling process using a pattern fingerprints P1 of dimension equal to those of
the fingerprints that form the matrix F . Bits set to 1 in the pattern represent the
group of bits more significant of the bits set to 1 in the F matrix, that is, the
conditions that provide more information from the object under study.

Thus, a new calculation of the similarity matrix is proposed by the applica-
tion of a scaled Tanimoto index as follows:

Ts = cs

as + bs − cs
, (5)
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where

as = aa + ap x W,

bs = bb + bp x W, (6)

cs = cc + cp x W,

• The aa , bb and cc values represent the number of bits set to 1 in the fin-
gerprints A, B and common in A and B, respectively, and not set to 1 in
the pattern fingerprint P .

• The ap, bp and cp values represent the number of bits set to 1 in the fin-
gerprints A, B and common in A and B respectively, and set to 1 in the
pattern fingerprint P .

• W is a scaling factor that permits to give more weight to those bits set
to 1 in the samples A and B and also set to 1 in the pattern P1 in the
similarity calculation.

As can be seen, equation (6) permits to weight up the different fingerprint
bits in the similarity calculation, thus considering different levels of significance
for the variables.

A pattern fingerprint P0 can be built considering the frequency of the bits
set to 0 and the threshold t ′. Both pattern fingerprints (P1 and P0) are used
when the averaged Tanimoto index is employed for the generation of the simi-
larity matrix.

5. Classifying information: soft independent modelling of class analogy

After building the similarity space, this is used as the input of classifica-
tion processes. The SIMCA is a technique employed for the development of rules
capable of determining if new objects belong to an already existing group. The
use of SIMCA in contrast to other pattern recognition approaches is based on
the versatility involved in SIMCA rules. Thus, SIMCA allows assigning a target
object to: (a) none of the modelled classes; (b) only one class; and (c) two or
more classes of those modelling the similarity space considered.

5.1. Developing the classification rules: the learning stage

The development of SIMCA models involves two steps, namely: the learn-
ing and testing stages. In the first step, objects with class-keyed properties known
are used to build the membership space from predictors (in this case, similar-
ity values). For this, a Principal Component Analysis (PCA) is realised for each
group of learning objects belonging to a given class. The aim of this step is
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the transformation of original data to a reduced space for establishing of the
membership class zone in a way easier than that for the original space. This is
due to removal of co-linearity in original data and, in turn, the use of few latent
variables that are linear combinations of original similarity values.

The theorem of matrix algebra, called Singular Value Decomposition (SVD),
is used for the upon above-commented transformation as follows:

SC = UΛV T , (7)

SC = λ1u1V T
1 + λ2u2V T

2 + · · · + λr ur V T
r , (8)

where SC is the n × p similarity matrix (n is the number of objects that com-
pose the learning set of a class C and p is the number of similarity variables); U
is an nxr column-orthonormal matrix; V is a pxr column-orthonormal matrix;
and Λ is an r xr diagonal matrix. Equation (8) is the compact equation (7) writ-
ten as individual contributions. The fact of the orthonormality required for the
new space implies that:

U T U = PT P = Ir . (9)

Traditionally, the notation employed in chemometrics for SVD defines the
score and loading matrixes (after carrying out a series of simplifications, whose
explanation is out of the scope of this work), represented by means of the sym-
bols T and P such that T = UΛ and P = V . Thus, equations (7) and (8) are
transformed as follows:

SC = T PT , (10)

SC = t1 pT
1 + t2 pT

2 + · · · + tr pT
r . (11)

In addition to orthonormality requirements, the construction of the princi-
pal components is based on the criterion of maximal variance of data explained
by these factors or latent variables. Thus, SVD is carried out keeping the sub-
space with largest variance. The first principal component is selected as follows:

p1 = max{var(PT SC)}. (12)

For the k − 1 component, the following calculation is carried out:

ŜCk−1 = X −
k−1∑

i=1

pi pT
i X, (13)

pk = max{var(PT ŜCk−1)}. (14)

Since only the most significant latent vectors are retained in practical situations,
equation (10) is transformed in the following equation:

SC = T PT + N , (15)
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where N is the residual data matrix. The optimal number of scores (r ′) needed
to describe the structure of the learning class C can be determined by cross-
validation. The residuals from the model can be computed from the scores on
the non-retained eigenvectors. Then:

res =
√ ∑n

i=1
∑r

j=r ′+1 t2
i, j

[(r − r ′)(n − r ′ − 1)] . (16)

5.2. Validating the classification rules: the testing stage

After developing the model for the class C , its prediction efficiency must be
tested with an independent set of objects (the testing set). The statistical param-
eter used is the classification error, which is computed as the sum of false pos-
itives (C non-member objects assigned to the class C) and false negatives (C
member objects not assigned to the class C) divided by the number of testing
objects. The evaluation of this error is depending on the problem (target degree
of classification, time reduction achieved, number of objects with information
available, etc.).

The criterion for assigning a new object to the class C is based on a critical
value of Euclidean distance towards the model. This is given by:

rescrit = √
Fcritres. (17)

For a new object, the Euclidean distance from the model is then obtained,
similarly to equation (16):

resnew =
√∑r

j=r ′+1 t2
new, j

(r − r ′)
. (18)

Finally, if resnew < rescrit, the new object belongs to class C , otherwise it does
not.

6. Application of the method to spectroscopy data

The proposed method has been applied to spectral data obtained by means
of the MIR technique. Each array consisted of 1142 variables and different types
of wines were studied.

A high degree of similarity between the wine samples can be observed in
figure 1. The exception for this similarity is the 1150–1300 and 2300–2400 cm−1

zones. The use of the proposed method for enlarging of the dissimilarities is nec-
essary in order to differentiate and classify samples of wines using spectroscopic
data under various criteria.
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Figure 1. MIR spectroscopic data for all the samples of wine.

Analysis of spectral outliers was carried out to avoid the influence of anom-
alous spectra on building of the fingerprints, and then, on the generation of the
similarity matrices.

Spectra were normalised using the standard method (equation 1). A nor-
malised spectrum of a sample selected randomly and the fingerprints built using
different threshold values (t) are shown in figure 2.

As figure 2 shows, the selection of the threshold value t is a key aspect in
building of fingerprint as it determines its density. An increasing of threshold
value produces a decreasing of fingerprint density. Fingerprints with high-density
yielded high-similarity values, even for very different samples. Just the opposite
occurs with low-density fingerprints. Thus, very low-similarity values were
obtained, even for very similar samples.

A comparison between the use of similarity matrices (using Tanimoto index
and averaged Tanimoto index) and the spectral data is given in figure 3. In
this figure, the score plots for the PCA applied to both the similarity matri-
ces generated from fingerprints and the spectral data matrix are shown. Differ-
ent threshold values t (from 0 to 1) were used for building of fingerprints.
Extreme threshold values produced an anomalous behaviour that yielded a high
no-explained data variance. The best discrimination was achieved for the thresh-
old value t = 0.4 and the averaged Tanimoto index, as figure 3 shows.

The proposed method permits to increase and decrease the similarity val-
ues for similar and different samples, respectively. Two factors influence on the
efficiency of the pattern for enlarging of the differences: (a) the selection of
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Figure 2. Normalised spectrum of an object selected in a random way and the fingerprints built
using different threshold values.

Figure 3. Score plots resulting from applying PCA to the similarity matrices (Tanimoto and aver-
aged Tanimoto indexes using a threshold value t = 0.4) and the spectroscopic data matrix. b: white
wines, t : red wines.

the samples used for building of the pattern fingerprint; and (b) the frequency
threshold value t ′ employed.

Figure 4 shows both the frequency distribution of the normalised values
and the corresponding pattern fingerprints generated from different threshold
values t ′ for Cencibel variety aged and young wines. Thus, the proposed method
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Figure 4. Frequency distributions and their pattern fingerprints for t ′ = 0.4 and t ′ = 0.6 using:
Cencibel variety aged and young wines.

based on building of fingerprints from spectral information permits to differen-
tiate wines.

Low-threshold values t ′ yielded pattern fingerprints with high density that
were not appropriate for samples classification. Nevertheless, the fingerprints
generated using a threshold value t ′ = 0.6 were appropriate for characterisation.

7. Discussion and remarks

A new method based on use of fingerprints and scaling technique for the
similarity calculation has been proposed in this paper for the development of
classification models. The method has been applied in an efficient way to spectral
data of wines of different type, origin and grape variety.

The capacity for classification of the different models has been validated
in a series of tests using SIMCA applied to similarity matrices. A comparison
between the similarity matrices and the spectral matrix was carried out. Thus, a
training set composed by 85 samples and a validation set consisting of 30 sam-
ples (not considered for the training set) were selected.

The error obtained in the classification of white and red wines was 20% for
spectral data. When the similarity matrices were employed the error decreased to
5% with the use of the threshold value t = 0.4, pattern fingerprints of t ′ = 0.6,
and W = 9. The similarity matrices were generated using the averaged Tanimoto
index.

Efficiency of the models for classifying wines according to grape variety,
origin and ageing process was also improved. Although the transformation of
original data to similarity values involves information removal, the part of the
signal removed is that stochastic or random part, which hampers the interpreta-
tion of the deterministic part.
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Table 1
Use of different patterns for similarity calculation between two wines from Cencible grape
and two wines from Cabernet Sauvignon grape. These wines correspond to two different

cultivation areas (Origins 1 and 2). The wines have been randomly selected.

Cencibel-1 Cencibel-2 Cabernet-1 Cabernet-2

Without Pattern
Cencibel-1 1.00 0.76 0.56 0.52
Cencibel-2 1.00 0.51 0.60
Cabernet-1 1.00 0.73
Cabernet-2 1.00

Cencilbel Pattern
Cencibel-1 1.00 0.96 0.51 0.49
Cencibel-2 1.00 0.46 0.56
Cabernet-1 1.00 0.72
Cabernet-2 1.00

Cabernet Pattern
Cencibel-1 1.00 0.75 0.54 0.52
Cencibel-2 1.00 0.48 0.56
Cabernet-1 1.00 0.91
Cabernet-2 1.00

Origin-1 Pattern
Cencibel-1 1.00 0.72 0.77 0.50
Cencibel-2 1.00 0.50 0.53
Cabernet-1 1.00 0.73
Cabernet-2 1.00

Origin-2 Pattern
Cencibel-1 1.00 0.75 0.48 0.50
Cencibel-2 1.00 0.51 0.81
Cabernet-1 1.00 0.70
Cabernet-2 1.00

An example of the effect produced by the use of different patterns in the
calculation of the similarity is shown in table 1. Samples selected in a random
way corresponding to two types of wines (Cencibel and Cabernet–Sauvignon
varieties) and two different origin zones (Origins 1 and 2) were used. As can
be observed in table 1, the use of patterns increases the similarity between the
wines belonging to the pattern, in addition to the decreasing of the similarity
for different types. Moreover, the use of patterns with a high degree of specificity
(grape variety) produces changes more significant than those obtained when the
patterns are less specific (origin denominations). In spite of this, an improvement
in the samples discrimination is observed in all the cases.

Pattern fingerprints databases with low requirements for storage can be
built and updated with new data in order to refine pattern construction.
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